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Coherent interaction effects in pulses propagating through a doped nonlinear dispersive medium
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Using a numerical approach we report on the cloning dynamics of simultaneous self-induced transparency
(SIT) and nonlinear Schringer (NLS) solitons in a doped nonlinear dispersive medium. This technique
involves a three-level atomic system interacting resonantly with two optical fields withirseheme. As a
result, a pulse in the signal frequency is transformed into a replica of the pulse in the pump frequency. The
atomic population evolution shows that the basic mechanism behind the cloning process is the coherent
population trapping effect. Furthermore, it is shown that the signal clone presents characteristics of both the
SIT soliton and NLS soliton.
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I. INTRODUCTION cation systems. This class of solitons represents solutions of
the nonlinear Schidinger equatioNLS) that governs non-
The investigation on coherent phenomena in connectiotinear dispersive propagation away from resonances. By add-
with optical pulse propagation has been studied extensiveling a dopant in the waveguide one may study coherent exci-
by many authors. Particularly, the problem of propagation ofation effects, such as SIT, in the resonant propagation
a pair of matched optica| pu|ses through a three-level me[egime. In this case, the resonances mOdlfy the nonlinear
dium under resonance conditions, has revealed effects th@Plarization with an atomic contribution proportional to the
can be observed and further used for optical devices. Fgtoupling fields, but the soliton properties are still kept. Mau
example, electromagnetically induced transparefidy in- ~ Mistov and Manykir{19] have reported the theoretical pos-
duced refractive index Changﬁi and |ate|y soliton C|Oning S|b|||ty on the coexistence of SIT and NLS solitons. Due to
[3]. All of these effects have a common underlying mechathe development of doped optical fibers for optical commu-
nism, the coherent population trappingCPT) effect, hications, e.g., erbium-doped fiber amplifig26), this coex-
whereby an otherwise absorbing medium becomes transpdgtence has been the subject of intense intd@sst24. The
ent. The resonant interaction of the optical fields with thenumerical demonstration on the existence of this mixed state
two electrical dipole transitions of a three-level systemhas been performed by Nakazawa, Yamada, and KuB&dfa
within a A scheme, provides a suitable situation to trap thevho has named it as a SIT-NLS soliton. _
atomic population in a coherent superposition of the lower Recently, the possibility of SIT-NLS soliton cloning has
states, so that the upper state remains practically unoccupiéen demonstrated in a nonlinear dispersive medium coher-
[4]. This kind of coherent interaction effects in atomic sys-ently driven[25]. In this work, we extend the investigation
tems gives rise to many applications in high resolution specOn the propagation dynamics of a SIT-NLS cloned soliton,
troscopy[5], laser without inversiofi6,7], atom-cooling sys- including results on the atomic population evolution and on
tems[8], and pulse shapin@]. Another example is given by the influence of a dispersive nonlinear medium over the clon-
electromagnetically induced transparency in nonlinear melg process as well as over the clone propagation. In Sec. Il
dia, such as in rare-earth doped crysfal@], opening poten- We present the basiq theory and obtgin the set of coupled
tial applications in high resolution imagd.1], and signal €duations that describe the propagation of the pulsas
[12] processing. The application of coherent excitation to thdeénded NLS equationsas well as the atomic system evolu-
investigation of nonlinear optical processes has also erfion (Bloch equations Section IIl presents our numerical
hanced some known effects such as four wave mikigj, results based on numerical simulations of the set of coupled
second harmonic generatiph4], sum-frequency generation NLS-Bloch eguations._Beyond th_e soliton cloning, thg results
[15], and giant nonlinearitief6]. In the propagation con- for the atomic popuIatlor_] behavpr are also shown, |Ilgstrat—
text, McCall and Hahii17] have demonstrated the possibil- Ing the coherent population trapping effect that underlies the
ity of soliton pulse propagation through an absorbing me{Process of soliton clone formation. We further comment on
dium modeled by a two-level atomic system, well known asthe influence of cross-phase modulatietPM) on this pro-
the self-induced transparency solit@®IT soliton. The SIT ~ cess through a phase variation analysis. Finally we demon-
soliton appears as a stationary solution of the Maxwell-Bloctstrate the possibility of controlling the temporal localization
equations. Modeling the medium by a three-level systemOf the soliton clone under the variation of the ratio between
Vemuri, Agarwal, and Vasad@] demonstrated the phenom- the amplitudes of pump and signal pulses at the input, estab-
enon of SIT soliton cloning. The cloning process is underishing an external control on the clone properties.
stood as the amplification and shaping of a weak field of
arbitrary temporal profile at the Stokes transition into a rep-
lica of a soliton wave at the pump transition.
Solitons are also present in dispersive nonlinear media Let us consider the dynamics of colored matched pulses
[18] with important perspectives for fiber optical communi- propagating through a doped Kerr medium. By colored

II. BASIC THEORY
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|1> varying envelope approximation and writing the electrical
field as az-propagating field, without considering the modal
distribution, we obtain the following equations for the field

w]g envelopes:
W3 2)
dA12 i PAn
7 EBZZW +iyl|Ad?+2|Arg? 1AL
|3> [ 12N, *
+ 2enc C2C1M12, (4)
FIG. 1. Sketch of the energy levels forAasystem. 0
matched pulses we mean a pair of optical pulses tuned in  gA,, i A3 5 5
different frequenciegpump and signalwhose amplitudes ?:_EBZ3W+WB[|A13| +2|A15"1A13
and phases have a well-defined relation. We suppose that a
three-level atomic system plays the role of a dopant in a w1,
nonlinear dispersive waveguide, e.g., an optical fiber. The Zeoc O3 C1is: 5

system is then modeled by two resonant electromagnetic

fields interacting with a three-level system within /& B ) .

scheme including propagation effects such as self—phas‘@here_ v1j=NzKqj with n; as (tgk;e Kerr coefficient related to
modulation(SPM), cross-phase modulation and group veloc-the thwd-order SUSCGp'thIhtX/ andk,; as the wave vector

ity dispersion(GVD). The upper level, here characterized asc0rresponding to the field,; . n, represents the dopant den-
the|3) state, is coupled to stat#) (|2)) via a monochromatic Sty @ndB;; is GVD parameter associated to the fiéld . It

field at frequencyw,(w,), as described in Fig. 1. Let should be noted here_, that I_E(qs) gnd(S) are written in the
A(t)[AL(t)] be the optical pulse tuned in a frequency _referenc_e frame that is moving with an average group veloc-
close to the transition frequenays (wy,), denoted by pump s thatis, 7=(t—=2/v,)/T, with T, as the pulse width and
(signa) pulse. Using the Schdinger quantum description Ug @S an average group velocity. In the presence of just one
for this three-level system one may obtain the atomic evoluPulse (for exampleA;5) in a nonlinear dispersive medium,
tion under the influence of both pump and signal fields. Théhe nonlinear Schidinger equation supports a soliton solu-
Hamiltonian of the system can be written is= Ho+ wE, tion usually called the NLS soliton. The condition to obtain
whereHy is the free Hamiltoniany is the dipole moment of NLS solitons is th%t the sech shaped pulse power should be
the system, ané represents the total optical field. Compared9iVen by| 824/ y13T¢. To investigate the soliton cloning in a
to the total HamiltonianuE act as a perturbation. By first- Nonlinear medium we use a coexistence soliton, a SIT-NLS
order perturbation theory the system evolution is given bysollton. The gmstencc_a_of such a soliton solution is subjected
the following set of coupled differential equations for the to the following conditior(19J:

probability amplitudec;(t) of the atomic leveldj) within the

rotating wave approximation: Pones)=P2m (6)
de; i .
d_tl = g[Czﬂlelz(t)JFCsmaAls(t)], (1)  which means that the power of arSIT pulse must be such

that the exact balance between dispersion and nonlinearity is
attained. The set of equatioi$)—(5) is analytically intrac-

2 table and to obtain the evolution of both, pulses and atomic
population, along the propagation one must employ a nu-
merical approach. Using an algorithm that combines Runge-

deg i . Kutta and split-step methods to simulate the coupled interac-

Gt~ 7 LCimAE], (3 tion, one is able to study the soliton cloning properties in the

presence of group velocity dispersion, self-phase modula-
whereu, and uq3 are the electrical dipole moments associ-tion, and cross-phase modulation.

ated with the transitions. Together with the wave equation for All of the results described in the following sections are

the fields, this set of equations describes the intriguing effecebtained by using the wavelengths for pump and signal as

of SIT, whereby a 2-area pulse propagates without absorp-A13=1.55um andi;,=1.45um and typical values for the
tion. Particularly, if the pulse shape is a hyperbolic secanfiber parameters such as the Kerr coefficiem=4

one has a SIT soliton. Starting from Maxwell’s equations wex 10~ cm?/W. For simplicity, as the wavelengths are quite

can obtain the wave equation for the two optical fields. Hereclose we have used;,=vy;3=n,k3, and alsoB,,= B3

the polarization describes all the effects involved: self-=8,=—2.207 p4/km. Keeping in mind conditior{6), we

induced transparency, group velocity dispersion, and selfhrave used a peak power of 40 kW for the pump and 0.1 kW

phase modulation due to the Kerr nonlinearity. Because ofor the signal pulse and for both pulses we have used the
the presence of the two electric fields we need also to corsame half width at half maximum of=1.763<10 2 ps.

sider the effect of cross-phase modulation. Using the slowlyurthermore, as the energy differences between the resonant

dc, 3 i .
ar g[clﬂlelz(t)],
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FIG. 4. Intensity profile of the pump pulse as a function of the
FIG. 2. Evolution of the areas of punfproken ling and signal  normalized propagation distanztz, and normalized time-.
(full line) pulses as a function of the normalized propagation dis-

tance. ence along the propagation induces self-induced transpar-

ency. However, due to the presence of the signal, a process
transitions are not large we have also useg= u3= u. where energy from the pump is transferred to the signal pulse
The dipole moment is then determined via conditi6pthat  occurs. Within a distance of about #g5this process of en-
gives|u|?= (n,wh?/cBy).

ergy transfer ceases and at this stage, the signal becomes a
SIT-NLS soliton while the pump is depleted. To further illus-
trate the evolution of the pulses we plot bgthmpand sig-

nal for longer distances to show the soliton behavior of the

A. Soliton cloning

signal In Fig. 3 we note a signature of a NLS soliton since
In the following we present our central result: the cloningPesides the fact that the shape of the signal does not change

of a SIT-NLS soliton. Let us begin by launching the two @long the propagation, the characteristic delay from the SIT
pulses pump and signal into the medium, in a situation wheré&ffect is not present. The pump evolution is described in Fig.
the pump pulse is a SIT-NLS soliton and the signal is 5% oft showing its depletion and illustrating the irreversibility of
the pump, and not necessarily a SIT-NLS soliton. The initialthe energy transfer process. In this way, we can make a copy
conditions for the set of differential equations are chosen s@f @ SIT-NLS soliton tuned at the pump frequency to a signal
that the atomic population is in the lowest level thatds, frequency through a mechanism of coherent interaction. An
=1, ¢;=0, andc,=0, and the input pulses are given by important observation of the soliton cloning process that oc-
A7) = \/Po sechr and A12(7)20-05\ﬁo sechr. In Fig. 2 curs within a nonlinear dispersive medium is whether there
we illustrate the evolution of the areas of the pulses as &€ any frequency chirp along the clone after the process of
function of the normalized propagation distarete, to ob- energy transfer due to the presence of XPM. For the signal
serve the characteristics of the SIT effect. Hegds known Eﬁ:rs;’ z;lgig)('tzgﬂ piflfseeCtascasr;not\)/(\?nSiﬁelgigthgoﬂggretzzn{reedqgiqﬁ)é
H H : _ 2 .9,

SLSJIézeh:g“z;?]narpe?ce)gu(zjiﬁlfz:;dn dmﬁ enz-er%/r;zf EIU a-:_nhtﬁng L::T:r? or. dotted line. Notice that the XPM effect is already noticeable

at a propagation distance @§/100 that is a small distance

1 A

Ill. RESULTS
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FIG. 5. Temporal profile of signal pulgéull line) superposed
FIG. 3. Intensity profile of the signal pulse as a function of theby its frequency chirp(dotted ling at a propagation distance of
normalized propagation distanefz, and normalized time. z,/100.
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FIG. 6. Frequency chirp of the signal pulse around its central e
region at propagation distances 4,%dotted ling and 0.0%, (full

line).

compared with the propagation distance necessary for the
energy transfer to occur. However, when the process energy

transfer ceases the frequency chirp is zero characterizing a FIG. 7. Dynamics of the atomic population of the lowest level

NLS soliton, since the solution of NLS equation does notillustrating the coherent population trapping effect.

present a frequency chirp. In fact, the vanishing of the pump . o

ceases the XPM effect and together with CPT leads to ze;PaS become 2 Since all the population is trapped at level

frequency chirp transferring the NLS soliton characteristics> the signal does not feel the presence of atomic population

to the signal pulse or one might say, making a copy of thednd hence, it does not undergo absorption and re-emission

pump at the signal frequency. Fig. 6 shows the frequencyUch a@s in usual two-level SIT process. Therefore, once the

chirp along the pulse at a distance 7,5 energy transfer is compl_eted, the three-l_evel soliton d_oes not

present the characteristic SIT delay as it has been discussed

B. Coherent population trapping in the literaturg 3]. The CPT effect explains the SIT soliton

behavior presented by the cloned pulse, i.e., a self-preserving
Now we proceed to show the absence of the SIT delagech shape with an area equal te. 2

and to confirm the SIT-NLS soliton behavior. While the sig-

nal propagates as a soliton pulse, a coherent population trap- C. Soliton dragging

ping effect is going on within the atomic system, which )
keeps all the atomic population in the ground si8te This Up to now all the results presented here for the soliton

statement may be confirmed through a detailed study on thgoning were obtained by supposing that the initial signal
population evolution described by the Bloch equations. To

this end let us turn to Figs. 7, 8, and 9 where the dynamics of 10

the populations of statel8), |2), and |1), respectively, are 2z

depicted as functions of what we have named segment, © s R e
which means the propagation distance inside the medium E

that corresponds te A7, where A7 represents the pulse 3 06 —
sample time. First, let us focus into Figs. 7 and 9. These )

figures show that in the first stage of the dynamics, a transi- & 4, ]

tion from level|3) to |1) appears in the central region of the = ? -
pump since it is a 2 pulse. The probability to occur a tran- % 02 N1

sition between|1) and |2) is negligible because the signal e ]

area is not large enough to provoke a population inversion,

as we can see in Fig. 8. Further ahead this situation starts to 113137 B _
change and we note the energy transfer process illustrated 1 o
above. This process amplifies the signal until it reaches an 0.83

[«
area large enough to promote a transition. At this stage the iﬂ 0.67

pump is not a Z pulse anymore, as illustrated in Fig. 2. For 05 6.2
. i " R 0.33 42 E

a propagation distance around £, & situation of coherent 017 21 ¢

superposition between stat@s and|2) is established. Look- ’ 0 A 00

ing at the last stages of the propagation, we see that all popu- 6.2 ' sEemENT

lation has gone to leveB) where it is trapped. Meanwhile,

the area of the pump has faded away while the signal area FIG. 8. Dynamics of the atomic population situated in level two.
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T

FIG. 10. Temporal profiles of signal pulse for various initial

intensity ratios between pump and signal at a propagation distance
of 1.5z.

FIG. 9. Dynamics of the atomic population situated in level one.

) o ) ing in dispersive nonlinear waveguides including GVD,
amplitude corresponded to 5% of the initial pump amplitude.sp\;, and XPM. Using a set of coupled NLS-Bloch equa-

In the following we shall obtain results for other values of tions to describe the coherent dynamics of a three-level dop-
the ratio of the amplitudes to show that, by varying this ratiognt ith resonances at the pump and signal fields, we have
one may Contr_ol the f'nf"“ Ioca_llzat|on of the_ signal sol_|ton 4shown that the cloning mechanism is closely related to the
phenomenon first mentioned in Rg8] as soliton dragging. 1, 1ation trapping effect. By varying the intensity ratio of
Observation of the soliton cloning effect have been verifie he input pulses, we have demonstrated that the temporal
Ero)sor[r;%l:/raeluig ZLg\‘;sr?ﬁlg:sﬁ%?ﬁfsog;i?o)éﬁgfézt?ég at location of the signal clone may be controlled. In the particu-
27 _ 1.5 for ratios off =0.05. 0.1. 0.2. 0.3. We note that as lar situation considered here we have demonstrated that the
theo ratio grows the clonihg ,pr(.Jc'es,;s is -sp.)ed up so that theloning process is irreversible. These results suggest that ex-
clone generated under the larger rate is ahead of the clon@€riments Ca”'t?d ouft on d?pe|d f'belf a;? pos/sAlbIe, openlnglup
generated within a smaller ratio. This may be understood b anyﬁpersp;ec 'IYes °|r optica gpp 'ga}'t‘))ns- S ag exarr:jp e
noting that as one grows the amplitudes ratio, the signal pa e effect of soliton cloning In doped fibers may be used to
ticipates earlier on the whole process facilitating it. Studiegenerate solitons streams at different wavelengths with po-

on such aspects are in current progress and will be reportdgntial applications in soliton multiplexing.
elsewhere.
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