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Coherent interaction effects in pulses propagating through a doped nonlinear dispersive medium
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Using a numerical approach we report on the cloning dynamics of simultaneous self-induced transparency
~SIT! and nonlinear Schro¨dinger ~NLS! solitons in a doped nonlinear dispersive medium. This technique
involves a three-level atomic system interacting resonantly with two optical fields within aL scheme. As a
result, a pulse in the signal frequency is transformed into a replica of the pulse in the pump frequency. The
atomic population evolution shows that the basic mechanism behind the cloning process is the coherent
population trapping effect. Furthermore, it is shown that the signal clone presents characteristics of both the
SIT soliton and NLS soliton.
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I. INTRODUCTION

The investigation on coherent phenomena in connec
with optical pulse propagation has been studied extensi
by many authors. Particularly, the problem of propagation
a pair of matched optical pulses through a three-level m
dium under resonance conditions, has revealed effects
can be observed and further used for optical devices.
example, electromagnetically induced transparency@1#, in-
duced refractive index changes@2#, and lately soliton cloning
@3#. All of these effects have a common underlying mech
nism, the coherent population trapping~CPT! effect,
whereby an otherwise absorbing medium becomes trans
ent. The resonant interaction of the optical fields with t
two electrical dipole transitions of a three-level syste
within a L scheme, provides a suitable situation to trap
atomic population in a coherent superposition of the low
states, so that the upper state remains practically unoccu
@4#. This kind of coherent interaction effects in atomic sy
tems gives rise to many applications in high resolution sp
troscopy@5#, laser without inversion@6,7#, atom-cooling sys-
tems@8#, and pulse shaping@9#. Another example is given by
electromagnetically induced transparency in nonlinear m
dia, such as in rare-earth doped crystals@10#, opening poten-
tial applications in high resolution image@11#, and signal
@12# processing. The application of coherent excitation to
investigation of nonlinear optical processes has also
hanced some known effects such as four wave mixing@13#,
second harmonic generation@14#, sum-frequency generatio
@15#, and giant nonlinearities@16#. In the propagation con
text, McCall and Hahn@17# have demonstrated the possib
ity of soliton pulse propagation through an absorbing m
dium modeled by a two-level atomic system, well known
the self-induced transparency soliton~SIT soliton!. The SIT
soliton appears as a stationary solution of the Maxwell-Blo
equations. Modeling the medium by a three-level syste
Vemuri, Agarwal, and Vasada@3# demonstrated the phenom
enon of SIT soliton cloning. The cloning process is und
stood as the amplification and shaping of a weak field
arbitrary temporal profile at the Stokes transition into a r
lica of a soliton wave at the pump transition.

Solitons are also present in dispersive nonlinear me
@18# with important perspectives for fiber optical commun
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cation systems. This class of solitons represents solution
the nonlinear Schro¨dinger equation~NLS! that governs non-
linear dispersive propagation away from resonances. By a
ing a dopant in the waveguide one may study coherent e
tation effects, such as SIT, in the resonant propaga
regime. In this case, the resonances modify the nonlin
polarization with an atomic contribution proportional to th
coupling fields, but the soliton properties are still kept. M˘-
mistov and Manykin@19# have reported the theoretical po
sibility on the coexistence of SIT and NLS solitons. Due
the development of doped optical fibers for optical comm
nications, e.g., erbium-doped fiber amplifiers@20#, this coex-
istence has been the subject of intense interest@21–24#. The
numerical demonstration on the existence of this mixed s
has been performed by Nakazawa, Yamada, and Kubota@21#
who has named it as a SIT-NLS soliton.

Recently, the possibility of SIT-NLS soliton cloning ha
been demonstrated in a nonlinear dispersive medium co
ently driven@25#. In this work, we extend the investigatio
on the propagation dynamics of a SIT-NLS cloned solito
including results on the atomic population evolution and
the influence of a dispersive nonlinear medium over the cl
ing process as well as over the clone propagation. In Se
we present the basic theory and obtain the set of coup
equations that describe the propagation of the pulses~ex-
tended NLS equations! as well as the atomic system evolu
tion ~Bloch equations!. Section III presents our numerica
results based on numerical simulations of the set of coup
NLS-Bloch equations. Beyond the soliton cloning, the resu
for the atomic population behavior are also shown, illustr
ing the coherent population trapping effect that underlies
process of soliton clone formation. We further comment
the influence of cross-phase modulation~XPM! on this pro-
cess through a phase variation analysis. Finally we dem
strate the possibility of controlling the temporal localizatio
of the soliton clone under the variation of the ratio betwe
the amplitudes of pump and signal pulses at the input, es
lishing an external control on the clone properties.

II. BASIC THEORY

Let us consider the dynamics of colored matched pul
propagating through a doped Kerr medium. By color
©2002 The American Physical Society17-1
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matched pulses we mean a pair of optical pulses tune
different frequencies~pump and signal! whose amplitudes
and phases have a well-defined relation. We suppose th
three-level atomic system plays the role of a dopant in
nonlinear dispersive waveguide, e.g., an optical fiber. T
system is then modeled by two resonant electromagn
fields interacting with a three-level system within aL
scheme including propagation effects such as self-ph
modulation~SPM!, cross-phase modulation and group velo
ity dispersion~GVD!. The upper level, here characterized
the u3& state, is coupled to stateu1& ~u2&! via a monochromatic
field at frequencyv1(v2), as described in Fig. 1. Le
A13(t)@A12(t)# be the optical pulse tuned in a frequen
close to the transition frequencyv13 (v12), denoted by pump
~signal! pulse. Using the Schro¨dinger quantum description
for this three-level system one may obtain the atomic evo
tion under the influence of both pump and signal fields. T
Hamiltonian of the system can be written asH5H01mE,
whereH0 is the free Hamiltonian,m is the dipole moment of
the system, andE represents the total optical field. Compar
to the total HamiltonianmE act as a perturbation. By first
order perturbation theory the system evolution is given
the following set of coupled differential equations for th
probability amplitudecj (t) of the atomic levelsuj& within the
rotating wave approximation:

dc1

dt
5

i

\
@c2m12A12~ t !1c3m13A13~ t !#, ~1!

dc2

dt
5

i

\
@c1m12A12* ~ t !#, ~2!

dc3

dt
5

i

\
@c1m13A13* ~ t !#, ~3!

wherem12 andm13 are the electrical dipole moments asso
ated with the transitions. Together with the wave equation
the fields, this set of equations describes the intriguing ef
of SIT, whereby a 2p-area pulse propagates without abso
tion. Particularly, if the pulse shape is a hyperbolic sec
one has a SIT soliton. Starting from Maxwell’s equations
can obtain the wave equation for the two optical fields. He
the polarization describes all the effects involved: se
induced transparency, group velocity dispersion, and s
phase modulation due to the Kerr nonlinearity. Because
the presence of the two electric fields we need also to c
sider the effect of cross-phase modulation. Using the slo

FIG. 1. Sketch of the energy levels for aL system.
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varying envelope approximation and writing the electric
field as az-propagating field, without considering the mod
distribution, we obtain the following equations for the fie
envelopes:

]A12

]z
52

i

2
b22

]2A12

]t2 1 ig2@ uA12u212uA13u2#A12

1
iv12na

2«0c
c2* c1m12, ~4!

]A13

]z
52

i

2
b23

]2A13

]t2 1 ig13@ uA13u212uA12u2#A13

1
iv13na

2«0c
c3* c1m13, ~5!

whereg1 j5n2k1 j with n2 as the Kerr coefficient related t
the third-order susceptibilityx (3) andk1 j as the wave vector
corresponding to the fieldA1 j . na represents the dopant den
sity andb2 j is GVD parameter associated to the fieldA1 j . It
should be noted here, that Eqs.~4! and~5! are written in the
reference frame that is moving with an average group ve
ity, that is,t5(t2z/vg)/T0 with T0 as the pulse width and
vg as an average group velocity. In the presence of just
pulse ~for exampleA13! in a nonlinear dispersive medium
the nonlinear Schro¨dinger equation supports a soliton sol
tion usually called the NLS soliton. The condition to obta
NLS solitons is that the sech shaped pulse power should
given by ub23u/g13T0

2. To investigate the soliton cloning in
nonlinear medium we use a coexistence soliton, a SIT-N
soliton. The existence of such a soliton solution is subjec
to the following condition@19#:

P0~NLS!5P2p, ~6!

which means that the power of a 2p SIT pulse must be such
that the exact balance between dispersion and nonlineari
attained. The set of equations~1!–~5! is analytically intrac-
table and to obtain the evolution of both, pulses and ato
population, along the propagation one must employ a
merical approach. Using an algorithm that combines Run
Kutta and split-step methods to simulate the coupled inte
tion, one is able to study the soliton cloning properties in
presence of group velocity dispersion, self-phase mod
tion, and cross-phase modulation.

All of the results described in the following sections a
obtained by using the wavelengths for pump and signa
l1351.55mm andl1251.45mm and typical values for the
fiber parameters such as the Kerr coefficient,n254
310216 cm2/W. For simplicity, as the wavelengths are qui
close we have usedg12>g135n2k13, and alsob22>b23
5b2522.207 ps2/km. Keeping in mind condition~6!, we
have used a peak power of 40 kW for the pump and 0.1
for the signal pulse and for both pulses we have used
same half width at half maximum oft51.76331022 ps.
Furthermore, as the energy differences between the reso
7-2
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COHERENT INTERACTION EFFECTS IN PULSES . . . PHYSICAL REVIEW E 65 036617
transitions are not large we have also usedm125m135m.
The dipole moment is then determined via condition~6! that
gives umu25(n2v\2/cb2).

III. RESULTS

A. Soliton cloning

In the following we present our central result: the cloni
of a SIT-NLS soliton. Let us begin by launching the tw
pulses pump and signal into the medium, in a situation wh
the pump pulse is a SIT-NLS soliton and the signal is 5%
the pump, and not necessarily a SIT-NLS soliton. The ini
conditions for the set of differential equations are chosen
that the atomic population is in the lowest level that is,c3
51, c150, and c250, and the input pulses are given b
A13(t)5AP0 secht and A12(t)50.05AP0 secht. In Fig. 2
we illustrate the evolution of the areas of the pulses a
function of the normalized propagation distancez/z0 to ob-
serve the characteristics of the SIT effect. Herez0 is known
as the soliton period defined byz05pT0

2/2b2 . The pump
pulse has an area equal to 2p and hence the quantum cohe

FIG. 2. Evolution of the areas of pump~broken line! and signal
~full line! pulses as a function of the normalized propagation d
tance.

FIG. 3. Intensity profile of the signal pulse as a function of t
normalized propagation distancez/z0 and normalized timet.
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ence along the propagation induces self-induced trans
ency. However, due to the presence of the signal, a pro
where energy from the pump is transferred to the signal pu
occurs. Within a distance of about 1.5z0 this process of en-
ergy transfer ceases and at this stage, the signal becom
SIT-NLS soliton while the pump is depleted. To further illu
trate the evolution of the pulses we plot bothpumpandsig-
nal for longer distances to show the soliton behavior of t
signal. In Fig. 3 we note a signature of a NLS soliton sin
besides the fact that the shape of the signal does not ch
along the propagation, the characteristic delay from the
effect is not present. The pump evolution is described in F
4 showing its depletion and illustrating the irreversibility
the energy transfer process. In this way, we can make a c
of a SIT-NLS soliton tuned at the pump frequency to a sig
frequency through a mechanism of coherent interaction.
important observation of the soliton cloning process that
curs within a nonlinear dispersive medium is whether th
are any frequency chirp along the clone after the proces
energy transfer due to the presence of XPM. For the sig
pulse the XPM effect can be seen through the freque
chirp along the pulse as shown in Fig. 5, represented by
dotted line. Notice that the XPM effect is already noticeab
at a propagation distance ofz0/100 that is a small distanc

-

FIG. 4. Intensity profile of the pump pulse as a function of t
normalized propagation distancez/z0 and normalized timet.

FIG. 5. Temporal profile of signal pulse~full line! superposed
by its frequency chirp~dotted line! at a propagation distance o
z0/100.
7-3
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compared with the propagation distance necessary for
energy transfer to occur. However, when the process en
transfer ceases the frequency chirp is zero characterizi
NLS soliton, since the solution of NLS equation does n
present a frequency chirp. In fact, the vanishing of the pu
ceases the XPM effect and together with CPT leads to z
frequency chirp transferring the NLS soliton characterist
to the signal pulse or one might say, making a copy of
pump at the signal frequency. Fig. 6 shows the freque
chirp along the pulse at a distance 1.5z0 .

B. Coherent population trapping

Now we proceed to show the absence of the SIT de
and to confirm the SIT-NLS soliton behavior. While the si
nal propagates as a soliton pulse, a coherent population
ping effect is going on within the atomic system, whic
keeps all the atomic population in the ground stateu3&. This
statement may be confirmed through a detailed study on
population evolution described by the Bloch equations.
this end let us turn to Figs. 7, 8, and 9 where the dynamic
the populations of statesu3&, u2&, and u1&, respectively, are
depicted as functions of what we have named segm
which means the propagation distance inside the med
that corresponds tovgDt, where Dt represents the puls
sample time. First, let us focus into Figs. 7 and 9. Th
figures show that in the first stage of the dynamics, a tra
tion from level u3& to u1& appears in the central region of th
pump since it is a 2p pulse. The probability to occur a tran
sition betweenu1& and u2& is negligible because the sign
area is not large enough to provoke a population invers
as we can see in Fig. 8. Further ahead this situation star
change and we note the energy transfer process illustr
above. This process amplifies the signal until it reaches
area large enough to promote a transition. At this stage
pump is not a 2p pulse anymore, as illustrated in Fig. 2. F
a propagation distance around 0.7z0 a situation of coheren
superposition between statesu3& andu2& is established. Look-
ing at the last stages of the propagation, we see that all p
lation has gone to levelu3& where it is trapped. Meanwhile
the area of the pump has faded away while the signal a

FIG. 6. Frequency chirp of the signal pulse around its cen
region at propagation distances 1.5z0 ~dotted line! and 0.01z0 ~full
line!.
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has become 2p. Since all the population is trapped at lev
u3& the signal does not feel the presence of atomic popula
and hence, it does not undergo absorption and re-emis
such as in usual two-level SIT process. Therefore, once
energy transfer is completed, the three-level soliton does
present the characteristic SIT delay as it has been discu
in the literature@3#. The CPT effect explains the SIT solito
behavior presented by the cloned pulse, i.e., a self-preser
sech shape with an area equal to 2p.

C. Soliton dragging

Up to now all the results presented here for the soli
cloning were obtained by supposing that the initial sign

l

FIG. 7. Dynamics of the atomic population of the lowest lev
illustrating the coherent population trapping effect.

FIG. 8. Dynamics of the atomic population situated in level tw
7-4
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COHERENT INTERACTION EFFECTS IN PULSES . . . PHYSICAL REVIEW E 65 036617
amplitude corresponded to 5% of the initial pump amplitu
In the following we shall obtain results for other values
the ratio of the amplitudes to show that, by varying this ra
one may control the final localization of the signal soliton
phenomenon first mentioned in Ref.@3# as soliton dragging.
Observation of the soliton cloning effect have been verifi
for some values of the ratior 5A12(z50, t50)/A13(z50, t
50). Figure 10 shows the SIT-NLS soliton formation
z/z051.5 for ratios ofr 50.05, 0.1, 0.2, 0.3. We note that a
the ratio grows the cloning process is sped up so that
clone generated under the larger rate is ahead of the cl
generated within a smaller ratio. This may be understood
noting that as one grows the amplitudes ratio, the signal
ticipates earlier on the whole process facilitating it. Stud
on such aspects are in current progress and will be repo
elsewhere.

IV. CONCLUSIONS

In conclusion, we have investigated through numeri
simulations, the cloning of matched soliton pulses propag

FIG. 9. Dynamics of the atomic population situated in level on
t.

tt

V,

tt.

C
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ing in dispersive nonlinear waveguides including GV
SPM, and XPM. Using a set of coupled NLS-Bloch equ
tions to describe the coherent dynamics of a three-level d
ant with resonances at the pump and signal fields, we h
shown that the cloning mechanism is closely related to
population trapping effect. By varying the intensity ratio
the input pulses, we have demonstrated that the temp
location of the signal clone may be controlled. In the partic
lar situation considered here we have demonstrated tha
cloning process is irreversible. These results suggest tha
periments carried out on doped fiber are possible, openin
many perspectives for optical applications. As an exam
the effect of soliton cloning in doped fibers may be used
generate solitons streams at different wavelengths with
tential applications in soliton multiplexing.
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FIG. 10. Temporal profiles of signal pulse for various initi
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